L1 INTRODUCTION

Mathematical analysis studies concepts related in some way to real numbers,
so we begin our study of analysis with a discussion of the real-number system.

Several methods are used to introduce real numbers. One method starts with
the positive integers 1, 2, 3, ... as undefined concepts and uses them to build a
larger system, the positive rational numbers (quotients of positive integers), their
negatives, and zero. The rational numbers, in turn, are then used to construct the

irrational numbers, real numbers like -vZ and iv which are not rational. The
rational and irrational numbers together constitute the real-number system.

Although these matters are an important part of the foundations of
mathematics, they will not be described in detail here. As a matter of fact. in most
phases of analysis it is only the properties of real numbers that concern us, rather
than the methods used to construct them, Therefore, we shall take the real numbers
themselves as undefined objects satisfying certain axioms from which further
properties will be derived. Since the reader is probably familiar with most of the
properties of real numbers discussed in the next few pages, the presentation will
be rather brief. Its purpose is to review the important features and persuade the
reader that, if it were necessary to do so, all the properties could be traced back

to the axioms. More detailed reatments can be found in the references at the end
of this chapter.

also mn T. A set is called nonempty if it contains at le

ast one object.
We assume there exists a nonempty set R of o

: . bjects, called real num
which satisfy the ten axioms isted below. The axia J ’ t?ﬂm

three groups which we refer to as the field axioms, the order axioms, and the

completeness axiom (also called the least-upper-bound ax;
continuity).

1.2 THE FIELD AXIOMS
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determined by x and y satisfying the following axioms. (In the axioms tha appear
below, X, y, z represent arbitrary real numbers unless something is said to the
contrary.)

Axiom l.x+y=y+x, xy = yx (commutative laws).

Axiom2.x + (y+2)=(x +y) + 2, X(¥z) _ (xy)z (associative laws).

Axiom 3. x(y + z) = xy + xz (distributive law).

Axiom 4. Given any two real numbers x and y, there exists a real number z such
thal:.+z=y.Thiszisdennledbyy~::thenumbﬂx~;i3denmﬂhyﬂ. (It
can be proved that 0 is independent of x.) We write - x for 0 - x and call - x the
negative of x.
Aﬁnm!.'lheree:imsmlenslmemalnumherxiﬂ.Iflandyﬂretwnnﬂl
numherswimx#ﬂ,lhmthﬂtexiﬂsnrealnumherzsuchlhalxz:y.ﬂﬂsziﬁ
denoted by y/x; the number x/x is denoted by 1 and can be shown to be
independent of x. We write x™' for 1/x if x # 0 and call x*! the reciprocal of x.

From these axioms all the usual laws of arithmetic can be denved; for
example, -(-X) = x, (x "' =x,- (X - y) =y - X, X - y= x + (-y), etc. (For a more
detailed explanation, see Reference 1.1.)

1.3 THE ORDER AXIOMS
We also assume the existence of a relation < which establishes an ordering
among the real numbers and which satisfies the following axioms:

Aﬂnm&&mﬂymnfmﬂmhﬂmxzy.xﬂy,xbyhn!ds*
NOTE. x > y means the same as y < x.

Axiom 7. If x < v, then forevery zwe have x + z<y + 2
Axiom 8. If x >0 and y > 0, then xy > 0.
Axiom9.Ifx>yandy > z then x > z.

NOTE. A real number x is called positive if x > 0, and negative if x <0, We
denote by R* the set of all positive real numbers. and by R" the set of all negative
real numbers.

From these axioms we can derive the usual rules for operating with
inequalities. For example, if we have x <y, then xz < yz if 2 is positive, whereas xz
> yz if z is negative. Also, if x > y and z > w where both y and w are positive, then
Xz > yw. (For a complete discussion of these rules see Reference 1.1.)

Scanned by TapScanner




NOTE. The symbolism x <y is used as an abbreviation for the statement:
"XK<yorx=y"

. Thus, we have 2 < 3 since 2 < 3: and 2 < 2 since 2 = 2. The symbol > is
similarly used. A real number x is called nonnegative if x > 0, A pair of

simultaneous inequalities suchas x <y, y <z is usually written more briefly as x <
y <L

| The following theorem, which is a simple consequence of the foregoing
axioms, is often used in proofs in analysis.
Theorem 1.1. Given real numbers a and b such that

a<b+Eforeverye> 0. (1)
Thena<b.

Proof. If b < a, then inequality (1) is violated for e = (a - b)/2 because

Therefore, by Axiom 6 we must have a < b.
Axiom 10, the completeness axiom, will be described in Section 1.11.
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RATIONAL NUMBERS :

Quotients of integers a/b (where b#0) are called RATIONAL
NUMBERS. For Example1/2, -7/5 and 6 Rational Numbers. The set of
rational numbers which we denote by Q, contains Z as a subset.

If a and b are Rational, their average (a+b/2) is also Rational
and lies between a and b. Therefore between any two rational numbers
there are infinitely many rational numbers which implies that if we are given

a certain rational number we cannot speak of the “NEXT LARGEST” rational
number.

IRRATIONAL NUMBERS :

Real Numbers that are not Rational are called

“IRRATIONAL” . For Example the numbers V2 , e, , and * are
Irrational.

Theorem 1.10 :

If n is a positive integer which is not a perfect square,
then Vn is irrational.

Proof :
Case (i):
Suppose first that n contains no square factor > 1. ssssadien (1)
Assume Vn is rational.

vn = a/b (where a and b are integers having no factor in
common)

n = a’/b’ e

nb’= a® akinasnasnsal )

since the left side of this equation is a multiple of n. So too is a2

qtltttiniiniinainttintaitnnnnnRRnRRnRRRRRRn
RREEREEEEERRREEERGRREEREERRERGEREERREREERERR
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The n™ term has the sign of the fisrt neglected term and is less in
absolute value.

Sn=Y= 0 (-1) ¥/k!
We have the inequality.
0 < 7-Sak1 <1/(2k)!
0 <(e"-Sx1) (2k-1) < 1/2k < 1/2  (for any integerk>1)  ..eea(1)
NOw , (2k-1)! ( e'-Szx.1) is always integer.
If &' were rational. Then we could choose k so large that
k> (2k-1)! e

(1) The different of the two integers would be a number lies between o and
1/e which is impossible.

Thus e' cannot be rational and hence e cannot be rational.
s e Is Irrational.

Hence the proof.
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1.10. UPPER BOUNDS, MAXIMUM ELEMENT

Irrational number arise in algebra when we try to solve

certain quadratic equations. For example, it is desirable to have a real number
x such that x2 = 2.From the nine axioms listed above we cannot prove that
such an x exists in R because these nine axioms are also satisfied by Q and we

have shown that there is no rational number whose square is Z. The
completeness axiom allows us to introduce irrational numbers in the real

number system, and it gives the real-number system a property of continuity
that is fundamental to many theorems in analysis.

Before we describe the completeness axiom, it is
convenient to introduce additional terminology and notation.

Definition 1.12. Let S be a set of real numbers. If there is real number b such
that x < b for every x in S, then b is called an upper bound for S and we say
that S is bounded above by b.

We say an upper bound because every number greater than b
will also be an upper bound. If an upper bound b is also a member of S, then b

is called the largest member or the maximum element of S. There can be at
most one such b. If it exists, we write

b = max S.
A set with no upper bound is said to be unbounded above.

Definitions of the terms lower bound, bounded below, smallest member (or
minimum element ) can be similarly formulated. If S has a minimum element

we denote it by min S.

Examples

1.The set R* = (0, +) is unbounded above. It has no upper bounds and no
maximum element. It is bounded below by 0 but has no minimum element.

2.The closed interval S = [0,1] is bounded above by 1 and is bounded below
by 0. In fact, max S=1 and min $=0.

3.The half open interval S = [0,1) is bounded above by 1 but it has no
maximum element. Its minimum element 0.
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LEAST UPPER BOUND (OR) SUPREMUM

DEFINITION 1.13

Let S be a set of real numbers bounded above. A real number b 1s called a lcast upper
bound for S 1l 1t has the following two properties:

a) b 1s an upper bound for §.
b) No number less than b is an upper bound for §.

EXAMPLES:

If § =[0,1] the maximum element 1 is also a least upper bound for S. If [0,1] thie

number 1 is a least upper bound for S, even though S has no maximum element.

It is an casy exercise 1o prove that a set cannot have two different least upper bounds.

Therefore, if there is least upper bound for §, there is only one and we can speak of the leust
upper bound.

It 1s common practice to refer o the least upper bound of a set by the more concise

term supreme, abbreviated sup. We shall adopt this convention and write
b= sup$
to indicate that b 1s the supremum of 5. If § has a maximum clement, then max S = sup S.

The greatest lower bound, or infimum of S, denoted by inf S, is defined in an

analogous fashion.
THE COMPLETENESS AXIOM

Our final axiom for the real number system involves the notion of supremum.

Axiom 10. Every nonempty set S of real numbers which is bounded zbove has a supremum;
that is, there is a real number b such that b = sup S.

As a consequence of this axiom it follows that every nonempty of real numbers which
is bounded below has an infimum.

_
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TRINGLE INEQUALITY

If x is any real number, the absolute value of x; denoted by () is defined as
follows.

|x| = {ﬂfxaﬂ-xifxﬂﬂ

A fundamental inequality concerning absolute values is given in the following.

Theorem 1.21

If a>0 then we have the in equality [x| < a if and only If -a<x<a.

Proof:

|x| we have inequality
- | x| <x=<x
X=|x|orx=-|x|
Assume |x|<a

-|x] = -a

-a < -x<x<|x|<a
-a<X<a

Theyif x =0

IX| =x <a

If x <0

|X| = -x <a.

Theorem 1.22:
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For arbitrary real x and y we have |X+Y| < |X]|+|Y|

Proof:
We have
-1 X| < | X| <X
-1Y|<Y<|Y|

Addiction
(| X]+]Y)=X+Y<|X|+]|Y]
| X+Y|<|X]|+]|Y]
But X=A-C, Y=C-B
X+Y=A-C=AB=A-B
|a-b|<|a-c|+|c-b]
|z|=|x+y|-|y|

X=A=B, y=-b
|A+B|=[A|-|B]
|A+B|=|B|-|A|=-(|A|-]|B])
|A+B|=(|A|-|B]

By induction we can also prove the generdigations

| X1#Xat...... Xn| = |X1|-|X2] 0o | X n]
Theorem: 1
If a4,........anand by,........ b n are arbitrary real numbers, we have
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(k= 1nag by)? sk=1na2) (k= 1nb?)

Moreover of come a: # 0 equality holds if and only if there is a real x such that
aX+ax=0 for each k=1, 2, .... n.

Proof:
A sum of squares can never be negative hence we have.
k= ln(akx + bk)2 >0

For every real x, with equality if and only if reach term is zero the
inequality can be written in the form

Ax2*2bx+c =0
Where

A=k=1na% B=k=1nagbk ck-1nb
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